125 research outputs found

    Acute Respiratory Distress Syndrome (ARDS): Pathophysiological Insights and Lung Imaging

    Get PDF
    Acute respiratory distress syndrome (ARDS) is in the center of the scientific debate both for its complex pathophysiology and for the discussion about the remedies that could contribute to its healing. The intricate interplay of different body systems that characterizes ARDS is mirrored by two main research threads, one centered on the pathophysiological mechanisms of the disease and the other on the new approaches to lung imaging. In this Special Issue of the Journal of Clinical Medicine are presented studies using imaging technologies based on electrical impedance tomography, synchrotron radiation computed tomography and intravital probe-based confocal laser endomicroscopy. The studies on the pathophysiological mechanisms pertain to the evaluation of the biomarkers of the disease and the platelet disfunction during extracorporeal membrane oxygenation. These contributions witness the intensity of ARDS research as many of the key problems of the disease are only in part resolved

    Monitoring of total positive end-expiratory pressure during mechanical ventilation by artificial neural networks

    Get PDF
    Ventilation treatment of acute lung injury (ALI) requires the application of positive airway pressure at the end of expiration (PEEPapp) to avoid lung collapse. However, the total pressure exerted on the alveolar walls (PEEPtot) is the sum of PEEPapp and intrinsic PEEP (PEEPi), a hidden component. To measure PEEPtot, ventilation must be discontinued with an end-expiratory hold maneuver (EEHM). We hypothesized that artificial neural networks (ANN) could estimate the PEEPtot from flow and pressure tracings during ongoing mechanical ventilation. Ten pigs were mechanically ventilated, and the time constant of their respiratory system (τRS) was measured. We shortened their expiratory time (TE) according to multiples of τRS, obtaining different respiratory patterns (Rpat). Pressure (PAW) and flow (Vâ€ČAW) at the airway opening during ongoing mechanical ventilation were simultaneously recorded, with and without the addition of external resistance. The last breath of each Rpat included an EEHM, which was used to compute the reference PEEPtot. The entire protocol was repeated after the induction of ALI with i.v. injection of oleic acid, and 382 tracings were obtained. The ANN had to extract the PEEPtot, from the tracings without an EEHM. ANN agreement with reference PEEPtot was assessed with the Bland–Altman method. Bland Altman analysis of estimation error by ANN showed −0.40 ± 2.84 (expressed as bias ± precision) and ±5.58 as limits of agreement (data expressed as cmH2O). The ANNs estimated the PEEPtot well at different levels of PEEPapp under dynamic conditions, opening up new possibilities in monitoring PEEPi in critically ill patients who require ventilator treatment

    The Effect of Positive End-Expiratory Pressure on Lung Micromechanics Assessed by Synchrotron Radiation Computed Tomography in an Animal Model of ARDS

    Get PDF
    Modern ventilatory strategies are based on the assumption that lung terminal airspaces act as isotropic balloons that progressively accommodate gas. Phase contrast synchrotron radiation computed tomography (PCSRCT) has recently challenged this concept, showing that in healthy lungs, deflation mechanisms are based on the sequential de-recruitment of airspaces. Using PCSRCT scans in an animal model of acute respiratory distress syndrome (ARDS), this study examined whether the numerosity (ASnum) and dimension (ASdim) of lung airspaces change during a deflation maneuver at decreasing levels of positive end-expiratory pressure (PEEP) at 12, 9, 6, 3, and 0 cmH(2)O. Deflation was associated with significant reduction of ASdim both in the whole lung section (passing from from 13.1 +/- 2.0 at PEEP 12 to 7.6 +/- 4.2 voxels at PEEP 0) and in single concentric regions of interest (ROIs). However, the regression between applied PEEP and ASnum was significant in the whole slice (ranging from 188 +/- 52 at PEEP 12 to 146.4 +/- 96.7 at PEEP 0) but not in the single ROIs. This mechanism of deflation in which reduction of ASdim is predominant, differs from the one observed in healthy conditions, suggesting that the peculiar alveolar micromechanics of ARDS might play a role in the deflation process.Peer reviewe

    Dynamic Mechanical Interactions Between Neighboring Airspaces Determine Cyclic Opening and Closure in Injured Lung

    Get PDF
    OBJECTIVES:: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. DESIGN:: Experimental animal study. SETTING:: International synchrotron radiation laboratory. SUBJECTS:: Four anesthetized rabbits, ventilated in pressure controlled mode. INTERVENTIONS:: The lung was consecutively imaged at ~ 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end-expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (Fderecruited, Frecruited) were computed based on the comparison of the aerated volumes at successive time points. MEASUREMENTS AND MAIN RESULTS:: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of Fderecruited and Frecruited when mechanical interdependence was included, while its exclusion gave Frecruited values of zero at positive end-expiratory pressure greater than or equal to 3 cm H2O. CONCLUSIONS:: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage

    Artificial Neural Networks (ANN) in the Assessment of Respiratory Mechanics

    No full text
    The aim of this thesis was to test the capability of Artificial Neural Networks (ANN) to estimate respiratory mechanics during mechanical ventilation (MV). ANNs are universal function approximators and can extract information from complex signals. We evaluated, in an animal model of acute lung injury, whether ANN can assess respiratory system resistance (RRS) and compliance (CRS) using the tracings of pressure at airways opening (PAW), inspiratory flow (V’) and tidal volume, during an end-inspiratory hold maneuver (EIHM). We concluded that ANN can estimate CRS and RRS during an EIHM. We also concluded that the use of tracings obtained by non-biological models in the learning process has the potential of substituting biological recordings. We investigated whether ANN can extract CRS using tracings of PAW and V’, without any intervention of an inspiratory hold maneuver during continuous MV. We concluded that CRS can be estimated by ANN during volume control MV, without the need to stop inspiratory flow. We tested whether ANN, fed by inspiratory PAW and V’, are able to measure static total positive end-expiratory pressure (PEEPtot,stat) during ongoing MV. In an animal model we generated dynamic pulmonary hyperinflation by shortening expiratory time. Different levels of external PEEP (PEEPAPP) were applied. Results showed that ANN can estimate PEEPtot,stat reliably, without any influence from the level of PEEPAPP. We finally compared the robustness of ANN and multi-linear fitting (MLF) methods in extracting CRS when facing signals corrupted by perturbations. We observed that during the application of random noise, ANN and MLF maintain a stable performance, although in these conditions MLF may show better results. ANN have more stable performance and yield a more robust estimation of CRS than MLF in conditions of transient sensor disconnection. We consider ANN to be an interesting technique for the assessment of respiratory mechanics

    Acute Respiratory Distress Syndrome (ARDS): Pathophysiological Insights and Lung Imaging

    No full text
    Acute respiratory distress syndrome (ARDS) is in the center of the scientific debate both for its complex pathophysiology and for the discussion about the remedies that could contribute to its healing. The intricate interplay of different body systems that characterizes ARDS is mirrored by two main research threads, one centered on the pathophysiological mechanisms of the disease and the other on the new approaches to lung imaging. In this Special Issue of the Journal of Clinical Medicine are presented studies using imaging technologies based on electrical impedance tomography, synchrotron radiation computed tomography and intravital probe-based confocal laser endomicroscopy. The studies on the pathophysiological mechanisms pertain to the evaluation of the biomarkers of the disease and the platelet disfunction during extracorporeal membrane oxygenation. These contributions witness the intensity of ARDS research as many of the key problems of the disease are only in part resolved

    Acute Respiratory Distress Syndrome (ARDS) : Pathophysiological Insights and Lung Imaging

    No full text
    Acute respiratory distress syndrome (ARDS) is in the center of the scientific debate both for its complex pathophysiology and for the discussion about the remedies that could contribute to its healing. The intricate interplay of different body systems that characterizes ARDS is mirrored by two main research threads, one centered on the pathophysiological mechanisms of the disease and the other on the new approaches to lung imaging. In this Special Issue of the Journal of Clinical Medicine are presented studies using imaging technologies based on electrical impedance tomography, synchrotron radiation computed tomography and intravital probe-based confocal laser endomicroscopy. The studies on the pathophysiological mechanisms pertain to the evaluation of the biomarkers of the disease and the platelet disfunction during extracorporeal membrane oxygenation. These contributions witness the intensity of ARDS research as many of the key problems of the disease are only in part resolved
    • 

    corecore